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ABSTRACT

Wc develop a semi-discrete approximation framework for linear non-

autonomous nonhomogeneous functional differential equations of retarded type.

The approximation schemes are constructed and convergence results are obtained

through the approximation of an associated abstract evolution operator.

Computer implementation of the schemes is outlined and a spline based

method included in the framework is constructed. Extensions of the semi-

discrete methods to schemes incorporating full discretization and difference

equation approximation are also discussed. Numerical results for several

examples demonstrating the feasibility of the schemes are presented.
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1. Introduction

Our presentation deals with spline based approximation theory for

linear nonautonomous nonhomogeneous functional differential equations (FDE)

via approximation of the associated evolution operator for the homogeneous

equation. Our theoretical framework and the resulting convergence results

are analogous to the Trotter-Kato type approach for convergence of solution

semigroups for autonomous delay systems as developed in [8]. We restrict

our discussions to piecewise linear spline approximations, but have attempted

to state the theoretical results in a form so that one might, if one so de-

sired, easily extend the ideas in a rather straight forward manner to treat

higher order spline approximation schemes.

One might also view the discussions here as one concrete realization

of the evolution operator theory presented for abstract nonautonomous equa-

tions in [14]. Indeed, as we shall see below our approach is very closely

related to the efforts of Reber in [17, 18] who used the Krein approach to

develop for nonautonomous FDE control problems an approximation theory based

on the so-called "averaging" approximations of [4,5]. However, since the

spline based methods of [8] have been shown to offer considerable improve-

ment over the averaging schemes, and since the needs for schemes to treat

nonautonomous problems are rather obvious in a number of areas of applica-

tions (for one example, see the discussion of the tracking models in [24]),

we feel that our modest contribution below towards the development of spline

schemes is warranted. We demonstrate the computational efficacy of our

ideas by presenting a sample of our numerical findings in section 6.

Other authors have considered approximation schemes for nonautonomous

delay systems. Both Delfour [11] and Reber [18] consider optimal control

problems for linear nonautonomous retarded FDE and develop "full discretization"
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techniques (state and time discretization) that employ the averaging ideas

of [4,5]. Kappel and Schappacher in [13] consider nonlinear nonautonomous

delay systems which they approximate by linear interpolating spline schemes

in the "state" space C. This results in essentially an averaging type

scheme as opposed to the spline schemes discussed below. In a similar spirit

Kunisch [15] discusses the averaging and essentially equivalent linear inter-

polating spllne schemes for optimal control of neutral FDE with nonautonomous

retarded terms.

It is possible to take other approaches to a spline approximation theory

for delay systems. In [2] we combine dissipativeness of nonlinear operators

with Gronwall estimates to develop one approach to approximation of nonlinear

FDE. These ideas are pursued in [7, 10] to yield spline approximation methods

(in the context of parameter estimation schemes) for quite general nonlinear

nonautonomous systems of FDE. In addtition to differing in spirit from the

approach of [7, 10], our results below are applicable to linear systems with

nonsmooth coefficients while the theory of [7, 101 requires some smoothness

on the coefficient matrices if it is applied to linear systems.

For our detailed development below we consider ordinary differential

equation (ODE) or semi-discrete approximations to linear FDE. These ODE

for the "Fourier" coefficients of the approximate solution relative to a

fixed spline basis must then be solved by a high order ODE solver (a fourth

order Runge-Kutta in the case of the examples presented in section 6). An

alternative approach involing immediate full discretization (in both time

and state) and resulting in a differerce equation approximation of the FDE

could be taken in the spirit of the efforts of Rosen in [19, 20]. We give

a brief indication of some of these ideas in section 5 but will not pursue

a full detailed development along these lines.
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While we shall not discuss such applications directly, the reader should

be aware that the approximation ideas developed here are readily (and profit-

ably) used in optimal control and parameter estimation problems (e.g. see [1],

(3], [5], [6], [9], [12], [16], and [21]).

The presentation below is organized in the following manner. In section

2 we summarize equivalence results between FDE and abstract evolution equations.

We also establish a dissipative condition for the operators involved that is

crucial in our development. Basic approximation results are given in section

3, first for systems with continuously differentiable coefficients and then

for systems with L coefficient matrices. This is followed by section 4 in

which we develop a particular piecewise linear spline scheme in detail and

explain how it is to be implemented. A brief discussion of full discretization

ideas is given in section 5. We conclude the paper with some representative

numerical findings in section 6.

Notation throughout is completely standard with respect to symbols for

C, L , etc. We denote the usual Sobolev spaces W k) of functions f with
p 2

(-)(k) kftk absolutely continuous and f in L2  by H . For Lebesgue spaces

of R -valued functions on (a,b) we adopt the notation L n(a,b) while Lp nxn

denotes the space of n square matrices. Finally, we shall sometimes use

D to represent the derivative of a function 4.

2. The Linear Non-autonomous Functional Differential Equation and its
Equivalent Formulation as an Abstract Evolution Equation

In this section we describe the functional differential equation (FDE)

initial value problem for which we seek approximation schemes and give an

equivalent formulation of it as an abstract evolution equation in an infinite

dimensional Hilbert space. Many of the results and ideas which are outlined

and summarized below are discussed in detail in [18, sections 2 and 3].

" ... . . . .
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We consider n-vector systems of the form

(2.1) X(t) = L(t)xt + f(t) t > 0

(2.2) x(s) = x =

where f E L2,(ocS, +), n C Rn ,  2  Ln(-r,0) and x denotes the

function 0 - x(t+e), -r < 0 < 0. We assume that for each t > 0, the

linear operator L(t):L 2 (-r,0) R n has the form

V0
(2.3) L(t)$ = E Ai(t)$(-Ti) + f A(t,6)0(0)de,

i=-r

with 0 = < T1 < T2 - < TV r, AiC L((s,+oo),L ) i = 0,1,2 .- v

and the function t - A(t,.) an element of L ([s,+oo), L2 ([-r,O],Lnxn)). The

point evaluations of 4 C Ln(-r,0) required in the evaluation of L(t)c

pose no essential conceptual difficulties since, roughly speaking, we shall

interpret solutions of (2.1) as functions satisfying that equation in inte-

grated form (i.e. the differentiated form in the almost everywhere sense) and

thus any occurance of L(t)4 for 4 only an L2  "function" can be considered

as appearing under an integral with the L(t)4 then denoting an equivalence

class of functions. For a further discussion of this point, we refer the

reader to [8].

A solution to (2.1), (2.2) is a function x:[s-r,T] -, Rn, T > 0, such that1I
x E H I(s,T), x satisfies equation (2.1) almost everywhere in Is,T], x(s) = n

and xs = 4. Standard arguments [17] can be used to show that the FDE initial

value problem (2.1), (2.2) has a unique solution which depends continuously

upon the initial conditions and the nonhomogeneous term f. We shall on

occasion employ the notation x(t;i,4,f) (and x t,pf)) in order to denote

this unique solution (and its past history on [t-r,t]) to (2.1), (2.2) corre-

sponding to a particular choice of q,4, and f.
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We next define the Hilbert space Z by

Z e Rn xLn(-r,O),

with inner product

<.,.>Z =<.,*>Rn + <'''>L 2

and reformulate the FDE initial value problem (2.1), (2.2) as an abstract

evolution equation in Z. Corresponding to f E 0, it is possible to define

a solution operator for (2.1), (2.2) on Z by

U(t's) (,) = (x(tV;1,p,0),x (,,0)).

It is easily verified that for T > s the operators {U(t,s):t E [s,T]}

are continuous in t and uniformly bounded. In addition U(t,s) is an evolution

operator on Z in that the uniqueness of solutions to (2.1), (2.2) guarentees

that it satisfies U(s,s) = I and the transition property U(t,s) = U(t,T)U(T,s)

for all s < T < t < T.

Returning to the nonhomogeneous problem, we define for arbitrary

f C L r (s,+o)2, loc

t
(2.4) z(ts;n',W,f) = U(t,s)(O) + f U(t,s)(f(s),O)ds.

For each (ricp) C Z, f E L n (s,+-) and t > s the expression given inFor~~ ~~ eac (N ,fE L2,oc

(2.4) exists and is continuous in t. Furthermore, it can be shown that

(2.5) z(ts; , ,f) = (x(t;q, f),xt(n, f)).

Equation (2.5) states that (2.4) and (2.1), (2.2) are equivalent, and in

fact, forms the basis for the approximation schemes developed in the next
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section. Indeed, we construct convergent approximations to the solu-

tion of (2.1), (2.2) via the construction of convergent approximations

to z of (2.4).

If one is willing to impose additional restrictions on (2.1), (2.2) a

stronger result can be established. Consider the initial value problem

(2.1), (2.2) with the alditional assumption that the coefficient matrices,

the kernel in the distributed term and the nonhomogeneous term be continuously

differentiable in t and that (q, ) F W = {(n, ) C Z: C H 1(-r,O),n= 0(0)}.

It then can be shown that z given in (2.4) is the unique solution to the

abstract evolution equation in Z given by

(2.6) z(t) = A(t)z(t) + (f(t),O),

(2.7) z(s) = (r,4),

where for each t > s the operators A(t):W C Z-Z are defined by

(2.8) A(t)(4(O),#) = (L(t)i,$).

In addition it can be verified that

W(t) = (xWt;n f), xt01,0),

is also a solution to (2.6), (2.7) and hence must coincide with z. Thus

under these stronger hypotheses (2.1) -(2.2), (2.4), and (2.6)- (2.7) are all

equivalent.

The existence of an inner product on Z, equivalent to the standard

inner product on Z defined above, and an (j for which the operator

A(t) - ,)I is dissipative plays an essential role in many of the arguments

which follow. Toward this end, we define the same inner product on Z as
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that one employed in [8] and [10] for similar purposes. Let p be the

step function on [-r,O] defined by

P(O) = J -T _j+ 1 < e < -T\_j, j = 1,2,... v,

and Z the space Z with inner product <.,-> are given byP P

<( ,0 1 ) 011 W = ET + f P(o)0(0)p(O)dO
-r

It is easily verified that the <',*> inner product is equivalent toP

the standard inner product on Z and moreover, the following lemma can be

established.

LEMMA 2.1. For each t > s, A(t) - l is dissipative in Z . That is
Q

<A(t)z,z>p P < <z,z>P,

for each z F W with

3 M Im2 +-2+1
2 1 2 1  2

and
V

m, E i1, + IAI
i=O

It is in fact the case that A(t) - (ul is maximal dissipative. That is to

say, A(t) - wI is onto. The verification of this latter claim can be found

in [18, section 3]. The reader should note that while the hypothesis of

Lemma 3.3 in [18] include the assumption of smooth coefficients on the right

hand side of the FDE, it is easily seen that this assumption does not play a

role in the arguments used to show that A(t) - wI is onto.

Renwtk 2.1. By the Lumer-Phillips theorem (cf. [25, section IX.8])

the fact that for t 4 (s,+v) fixed, A(t) - bWI is a maximal dissipative
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operator on the Hilbert space Z is sufficient to conclude that A(t) is

the infinitesimal generator of a C semigroup of bounded linear operators0

on Z.

3. Approximation Results

Following the ideas discussed in [8] we base our approximation schemes

on the following construction. For each N = 1,2,''-,{ZN P NA N(t)} will be

called an approximation scheme for the initial value problem (2.1), (2.2) if

{Z N} is a sequence of finite dimensional subspaces of Z , {P N} is a sequence

of operators, where for each N, P N:Z0 -* ZN  is the orthogonal projection from

Z0 onto ZN  and {A N(t)} is a sequence of t-dependent operators on ZN .

THEOREM 3.1. Consider the FDE initial value problem (2.1), (2.2) under

the additional assumption that Ai E c([s,+°),Lnxn), t - A(t,1) Cl([s,+),

L2((-r,O),L nn)) and suppose that {ZN P NA N(t)} is an approximation scheme

for (2.1), (2.2) satisfying the following conditions

(1) ZN CW = dom(A(t)) N = 1,2,---

(2) For each t > s, A(t):ZN - ZN is defined by AN(t) = PNA(t),N = 1,2.--.

(3a) lim PNz = z in Z for all z E Z.

(3b) For 6W with P = PN( (O),IN) =  (N), N) we have

lim L (t) = - L(t) in Rn for each t 6 [s,T] and

lir DIN = D in L (-r,0) with ID(p-f) < KID2 I, K indepen-
N- N2

dent of N and t for all L 6W with Q H2(-r,O).

Then if UN(t,s) denotes the evolution operator (fundamental matrix solution)

corresponding to the finite dimensional ordinary differential equation in ZN

given by
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zN(t) = AN(t)zN(t),

we have that

lim I[PNU(ts)- UN(ts)PN]ZOI = 0,

for each z0 G Z, uniformly in t for t % [s,T].

P&oOA. An application of Lemma 2.1 and the fact that the PN are

orthogonal projections yields the following: For zN E ZN

<AN(t)ZN,ZN>p = <PNA(t)zN,ZN>p = <A(t)zN, P N ZN> p

= <A(t) ZZ > - <Z Zz >
N2NQ N' NP'

where w is defined in the statement of Lemma 2.1, and is independent of N.

The calculation above, and the fact that N(t) is a bounded linear operator

defined on the finite dimensional space ZN are sufficient to guarantee that

AN(t) - wiI, N = 1,2,''., are maximal dissipative, and moreover

C(N(t)) C {XC :ReA<w), N = 1,2,**, t > s.

Thus for all A E with ReA > w the resolvent operators R(AN(t)) exist

and by standard arguments (c.f. [14, p. 85]) we have

(3.1) JR(,A(t))p = I(AN(t)- AI)- 1 1 1 N = 1,2,''', t F [s,+-).
p~)) N p< - ReX -w

Inequality (3.1) and the same arguments used to establish the validity of

Theorem 3.5 in [18] allows us to conclude

U N(ts) z < Me( ) t

where M is a constant independent of N and L(.), the homogeneous part of
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the right hand side of the FDE (2.1). The reader is instructed to note

that while the constant M derived in the proof of Theorem 3.5 in [18]

does depend on L(,), our M does not. This is a consequence of the

fact that the weighting function p in the inner product <'> is in-

dependent of the A i, whereas that in the inner product <-,.>% chosen by

Reber is not. The significance of our choice for the inner product will

be apparent in the discussions below pertaining to extensions of our con-

vergence results to equations with the Ai, A only in Lo.

Let D be the subset of Z defined by

2
D = {(nI) EZ:4 GC (-r,O),n=P(O),L(s) = ((0)1.

Using the fact that A(s) is the infinitesimal generator of a C0 semi-

group of operators on Z (cf. Remark 2.1) arguments similar to those

used to verify Lemma 2.2 of [8] can be used to establish the fact that D

is dense in Z. Consider next the initial value problem in Z given by

(3.2) z(t) = A(t)z(t),

(3.3) z(s) = z 0 , z0 E D,

and the following identity derived from it:

PNZ(t) = AN(t)PNZ(t) + [PNA(t)z(t)-AN(t)PNz(t)].

Recalling that the PN are orthogonal projections, and therefore uniformly

bounded, we have

d [PNz(t)] = AN(t) [ PNz(t) ] + [PNA(t)z(t)-AN(t)PNZ(t)]

and thus, by the variation of constants formula



(3.4) P Z(t) U N(t,s)P Ns +fU(t,T)[PA()AN(T) ]Z(T)d

Since z i D cW, the unique solution z to (3.2), (3.3) is given by

Z(t) = U(t,S)z0,9

and hence (3.4) can be rewritten as

t

P~Ut's)z0 - UN(t's)PN zo = f UN(t,T)fPINA(T)-A N(T) PN'z (T)dT.

Therefore

t

(3.5) IP NU(t,s)z 0-U N(t,s)PN zof = I f U N(t,T)[PNA(T) A N (T)PN ]z(T)dT[*

t
<~ f IUN(t T) II[PAT- AN(T) PN]z (T) dT

5

Let z = ((p) Z be such that E-H 2(-r,O).

Then

I [P NA(t) - A N(O)pNIzI 2 = [PNA(t) - PNA(t)PN] ( (O),d)1

I (L (t) 0, DO - (L (t) WDo N)I 2

- (L(t) -L(t) N)12  + ID4-D I 2~ 0 ,
NRn N2
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as N -> 'o for each t G [s,T] by condition (3b). Thus PNA(t)z-A N(t)P z 0

for each t E [s,TI, and each z = ( (O), ) C Z with EH 2(-r,O).

Now under the smoothness assumption on L(-) for z0 = (4(O), ) G D

we have that x(-;P(O),P,O) EH (s,+-). Consequently x ((O),0) H 2(-r,O)

for t > s. Therefore in the light of the equivalence established in section

2, and the arguments above, we have

(3.6) J[ PNA(t)- AN(t)PN]z(t) = I[PNA(t)- AN(t)PN]U(t,s)zo

= f [PNA(t) - A N(t)PN (x(t;0(0), 0),xt(0), ,))

0 for each t4[s,T] with the convergence

being dominated. Indeed, x Q H2(s,+,-) and an application of condition (3b) yieldo

I[P N A (t ) - A N ) N] 1) 2 < I[A (t ) - A ( t) N ( X tw0)o0,x ( ( ) , 0) ) I 2

2 2
INt)N(t)PN]z(t)! t<N(~;W '')

= (L(t)x t( (0),4,O),Dx xNO)(( 0))

tt RN, N 2
- (L(t)x t (0),0),Dx ((0),i,0 +()))

t t

+ j Dt(x (O)4,O) x~ N( (O)'))1 2

t R

< JL(t)(x M+0)40)- xN (0) ,,,)) 2 + (2DrM I
t R

IL(t)(x t(0(0),00)- xt ( ) ) R n+ K2 ID2 xL2
L
2

where the bound on the second term in the above estimates is a consequence of

condtio (3b an (xN ()xNcondition (3b) and (x(t),x) N(x(t),xt). We note that it is not true in
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general that x (x N To see that the convergence in the first term is
t t 

N
dominated as well, we first observe that x (t) -~ x(t) uniformly in t for

t r, [s-r,T]. This follows from condition (3a) and the fact that the subset

of Z given by fz(t):t 6. [s,TJ} is compact (being the continuous image of

a compact set in R). Then, since for -r < 6 < 0

N NNxCe() = x t(0) +f Dt(ado

we have

Ix()x(O)i Ix (0)- x (o)1 + f ID(x x )(r)jdo

<i Ix t(0)- x t(O)1 + r2ID(x t x d12

<c jxN(t)- x(t)j + riKID 2 xt

W- xt-xct)j + r KID XI n
L 2 (s-r,T)

< IxN- xl. + r iKID 2 X1n
L2 (-rT

Therefore

L(t)(xt(N(0),O,0) - x N CcW0),10) R

E JA J -)I + r~l( f IA(e,O)1d6)A)

Returning to (3.5), the convergence stated in (3.6) together with the dominated

convergence theorem allow us to conclude that for each z 6F D

lP NU(t's)z0-U N (t,s)P NzoI - 0 as N -, uniformly in t for t 6 [s,TJ. Rut

D is a dense subset of Z and the operators
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[PNU(t,s) - UN(ts)PN]

are uniformly bounded in N. Therefore

IPNU(t,s)z-UN(t,S)PNZI - 0, N -,

uniformly in t for t E [s,T] for each z G Z.

RemaAk. It is possible to obtain estimates for the rate of convergence

of the evolution operators on restricted classes of initial data. The rele-

vant arguments are in the same vein as those used to derive the estimates

for the rate of convergence in the autonomous case. The details of these

arguments can be found in [8].

Turning our attention to the nonhomogeneous problem, for (fl, ) Q Z

and f L2,oc (s,+-) we consider the approximating finite dimensional non-

homogeneous ordinary differential equation in ZN given by

ZN(t) = AN(t)zN (t) + PN(f(t)),

ZN(S) = PN(T,1).

Using the variation of constants formula, we can write down the solution

to this initial value prob.em. It is given by zN(ts; ,,f) = UN(tS)PN(nO)
t

+ f UN(ta)PN(f() ,O)du for t > s. An application of arguments analogous to
5

those used to verify Theorem 3.2 of [8] will establish the validity of the

following theorem.

THEOREM 3.2. Under the hypotheses and conditions of Theorem 3.1 we have

n

(a) For (f, ) E Z and f E L2(s,T)

lim ZN(ts;q,,f) = z(ts;n ,,f),
N-o
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uniformly in t for t e [s,T] and uniformly in f

for f in bounded subsets of Ln(s,T).

(b) For (xN(t),yN(t)) E ZN defined by (xN(t),YN(t)) = zN(ts;r",Pf),

we have

lim XN(t) = x(t;q, ,f),
N-o

uniformly in t for t V[s,T].

(c) If {f } is a sequence in L n(sT) converging weakly to f then

lim zN(ts;qp,)fk) = z(ts;,,f),
N,k-*o

uniformly in t for t E[s,T].

Remactk. Although it will not be discussed in this paper, part (c) of

Theorem 3.2 above plays an essential role in the application of our approxi-

mation results to the solution of optimal control problems governed by FDE

of the form (2.1). These ideas are discussed in detail for the case of an

autonomous equation in [5].

We conclude this section with a discussion of the details involved in

extending the approximation results above to FDE initial value problems of

the form (2.1), (2.2) with non-smooth right hand sides. Define

A = L(s+),X L nxn)×xL 2(-r,0),L nxn)),

0

A = cl((s,+o),( X Lnxn) L2((-rO),Lnxn)).

c 0

Then Ac C A and for A = (A0,A,...,A ,A) = (A0(',X),AI(',%),''

A (',A),A(',',X)), an element of A or A define

V c. .. .- . . .. . A . . . . . .
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V02

, = lAj1. + I( f IA(.e)I2dO)

J=0 -r

Let L(t;A) be the operator defined in (2.3) where the coefficient matrices

are the components of A. Let UX(t,s) denote the solution operator and

x(,n,P,O,X) the solution of the FDE initial value problem (2.1), (2.2) with

f E 0 and L(t) = L(t;X). Let A(t;X):W C Z - Z denote the operator de-

fined in (2.8) with L(t) = L(t;X) and UN(t,s) denote the solution

operator for the approximating initial value problem in ZN:

ZN(t) = AN(t;X)zN(t),

ZN(S) = zN

with

A N(t;A) PNA(t;A).

LEMMA 3.1. Let A C A be fixed. Then there exists a sequence

k C Ac such that Ixk- X1j - 0, k - -. Moreover, for z0 = (p(O),p) F W

we have

IUA (ts)z0 -u A(ts)zOZ _K k- X1 1z01

where K = K(A) is a constant independent of k and z0.

PkooS. The existence of the sequence (X k C Ac with Ak - A is a

consequence of the fact that A Is a dense subset of A. Next, we let

(3.7) z(t) = UX(ts)z0 =

(3.8) zk(t) = U'(ts)z0 = (x(t; (0), ,0,k),Xt(4(0),P,0,Ak)),

where the extreme right hand equalities in (3.7) and (3.8) follow from the

equivalence established in section 2. We note that for each t > s, z(t),zk(t) a W.
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By [18, Theorem 3.15], for Xk C Ac and zO F W we can write

t
zk(t) = z0 + f A(a;Xk)zk(G)da

S

and by [10, p. 23] for X rE A and z0 E W

t

z(t) = z0 + f A(o;X)z(o)do.
s

Let At) = z(t) - zk(t). Then A(t) C W and

(3.9) A(t) f(A(;X)z((a)-A(;Ak)zk(a)]da
S

f~ A (a;X) [ z(o) - zk(a) ] + [Aa; X) - A,(o;X k ) ]zk(a) ldo

t
= f [A(o; x)A(a) + 6Ak(o)zk(o)]do,

s

where

6Ak ( a) A A ( ;X) - A ((;Xk).-

If we then apply [2, Lemma 2.1] (3.9) implies

JA(t)I 2 = IA(s)12 + 2 t<~;)~)AcP 0 f P

+ <&k(G)zk(G),A(G)> I do.

But A(s) - 0 and (c.f. Lemma 2.1)

<A(a;A))A(o),A(o)> < W(X)IA()l 2

P p

Therefore, an application of the Gronwall inequality yields

A(t) 2
< 22 +IAk()k(o) 2 +jlA(o)

t (, t
= f x+ )IA(o)12do +tI Ak (a)z (o) 2d

S S

Sft I6Ak(o)zk(o) 12do e(2w(X) + 1)(t-s)
s

......



Consider the integrand in the last expression above:

= ( ( (cY;) - A (c;A X~(Cf -(O)cOx),O) ,X

-r

Recalling that for XkEaA and zo W

uX(t,s)zo)l 
:i MIz 01eo(Ak) 

ts

k

by (3.8) we have

))(;("OX I < 4z e s-r < T T,

and hence

(M~zole SKjzo

where Kis independent of k for all k sufficiently large. Therefore

for [ s,TI

~6k(c)zk(O)Il J.(z0 )Al~~i~k

+ rj( f A(,;X)A(- e ;k)l dO)l )
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+ 4A(J-a,e;A) -A(-, A) 12 dO l)2

k k21ZO12 1 2

Thus, we have

IU x(t's)z 0-U xk (t's)z0 12 =zt) z zk(t)12= IA(t)I2

I~~~~ fIxoko (2w(X) + l)(t-s)

< (T-s)K Iz.I2IX-x kI0 e2(()l(s

IU x(t's)z 0-U A (t,s)Z01 <i K~z 01 IX-Xkl,

where

K =k(T-s) e(w(X) +1)(T-s)

Let X =(A 0 ,A1 ,..,A VA)e A be given and consider the FDE initial value

problem

x(t) = L(t;X)xt,

(X(s),X s) = = Cn4)
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Using the fact that W is dense in Z and A Cis dense I.n A, for

e > 0 given, we can choose 6 W such that

1, 0 - i0 l < j e-W(A) (T-s)

and X f-A such that
c

K(X)(FeM (X(-) ZI

Since

liol i -L0 z0I + IzoI <E e-W(X) (T-s) + IzoI

we have

IxK K(X)li O

Now,

(3.10) I[P N U (t's)- U N(t's)PNNzI < IPNUX~tps)[zo- io]I

" I[P N UA(t's) P N UX(tls)]Ro + I[P NU Jt's)- U ,N(t's)PN]'OI

+ IUXN(t's)PN[' zozo] < Me W(X)(T-s)Iz_ j0 1 + K(X)I 0io IA-AKw

+ I (P NU(t's) - UXN(t's)PN'O 1+ M lz-~ioew(A) (T-s)

< Me wX(Ts) E ewX(T-s) + K(X) 101l

+ [N~(~)U~~~)P]i+ Me w((Tsc w(A)(TS) )
" '[NU ('s) U ,~t'sPNNM

=2F- + l[PNU (t's)- U ,N(t's)PN]ZO! +Ee wX-w )Ts

-0 as C -~ 0,
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where the second term in the final expression above tends toward zero

uniformly in t for t e [s,T] by Theorem 3.1 and the coefficient of the

third term tends toward 1 as E 0 as a consequence of the continuity of

w with respect to X.

To summarize, (3.10) above reveals that in order to obtain an approxi-

mate solution to (2.1), (2.2) corresponding to X E A it suffices to apply

our approximation schemes to an approximating FDE initial value problem.

That is, apply them to (2.1), (2.2) corresponding to E Ac a smooth

approximation to X. However, when actually implemented in practice, the

approximation schemes which we have developed rely upon the application of

standard discrete numerical methods for ordinary differential equations to

the initial value problem

(3.11) ZN(t) AN(t;X)zN(t)

(3.12) z N(S) PNzO 0

If we replace A N(t;X) with A N(t;A) and if the time step in the ordinary

differential equation integration is chosen sufficiently small, the resulting

numerical solution would be indistinguishable from the one obtained by simply

integrating (3.11), (3.12) as it stands. Thus, although the convergence

result stated in Theorem 3.1 applies only to FDE initial value problems with

smooth coefficients, in practice our approximation schemes are applicable to

FDE with right hand sides in L as well.
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4. Spline Approximations and Their Implementation

In this section we outline the ideas involved in realizing the approxi-

mation schemes discussed in section 3 in a manner appropriate for computer

implementation. The formulation employed in [8] for schemes developed for

autonomous equations can be modified so as to be applicable to schemes for

nonautonomous equations as well. Therefore, with the exception of the modi-

fications required by the time dependence of the operator A(t), the results

below are a summary of results found in [8]. We conclude the section with

the construction of a particular realization using spline functions which

satisfy the hypotheses and conditions of Theorem 3.1.

Let {ZN P A N(t)} be an approximation scheme for the FDE initial value

problem (2.1), (2.2) which satisfies the hypotheses and conditions of Theorem

3.1. Assume dim ZN = kN < - N 1,2,''. We recall condition (1) of Theorem

3.1, which states that Z C W, and fix a basis for ZN, N = (SN(0),.)
N N$ j j

j = 1,2,'', kN, with . EH I(-r,O). Let 3N denote the n kN matrix

function defined on (-r,O) by

BN N N ... N= (EiN2.. ,  ),

and let

N= ( ON(o),N).

For any zN E ZNs we can write

zN = N N = ( (0)ON,3NN),

kN

where ctN E R is the coordinate vector representation of zN with respect

to the basis {fN)
kN

J ]1
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Central to our approximation schemes is the finite dimensional approy'-

mating ordinary differential equation initial value problem in ZN given by

(4.1) ZN(t) = AN(t)zN(t) + PN(f(t),O),

(4.2) zN(S) = PN(), ).

If we let wN(t), FN(t), and wN  denote coordinate vector representation ofN~t) N

zN(t), PN(f(t),O), and PN (, ) respe(ti',ely, and if we let AN(t) denote

the matrix representation for the operator A N(t), all with respect to the

NkN
basis {j the initial value problem (4.1), (4.2) reduces to

j jl'"

wN(t) = AN(t)wN(t) + FN(t)

w (S) = w
N N9

which can then be solved via standard numerical methods for the integration

of ordinary differential equations. However, in order to do this, we must

first compute

(1) PN04) E ZN for (r,) 0 Z

(2) AN(t), t _ S,

kN
with respect to the basis {fN}NI We begin with (1).

j j=1*
Since P N is the orthogonal projection Z. -* ZN, the orthogonality

relationship in Z

(4.3) {P NOM - (0,4)} ZN

uniquely determines P and therefore w N as well. Expression (4.3)

is equivalent to

<gN, w 8- (,) = 0,
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which implies

N = < N >

or

(4.4) QNW - hN(n'4)

where

N N 0 N(e)TBN(o)p(O)dO
QNp -r

and
0

hN(n,) = <P,(r,4)> = N(o)Tn + j N N(0)Tg()p(O)dO

Therefore,

s = Q I h (r)wN  N N

The calculations above provide 
a means by which FN(t) can be computed as

well. Indeed, (4.4) implies

QNFN(t) = hN(f(t),O),

but

h N(f(t),O) = (0) Tf(t),

and hence,

FN(t) Q -1N N (0)Tf(t).

N N

N= (4N(O) ' N) E and suppose N ER is such

We next address 
(2). Let

that
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Furthermore, for each t > s, let 'yN (t) be such that

AN~t) CNYNt).

It, of course, then follows that

(4.5) YN (t) A AN(t)cLN.

Since A N(t)$N = PNA(t)$N =PN (L(t) N DYY) YN (t) is the coordinate vector

representation for (Lt>4 N5 D4 N) Therefore, by (4.4)

QNYN (t) = h N(L(t) N PD 1= hL(t) N',(D BNN)ct % H(t) CtN'

where

%.(t) = hN(L(t)I 6, (D6 N)

= 6 (0) T(L(t) ) +J0 (O)T (De )(0)p(e)dO
-r

Thus,

QNYN (t) = N (t)a NP

or

YN(t) = QN %N(t)c~

which by (4.5) implies

A.N(t) = Q N'HN(t).

Since we have assumed that {ZN PNAN(t)l satisfies the hypotheses and

conditions of Theorem 3.1, it follows that



-26-

lim N (t) = (x(t;,pf),x t0,0),
N-o

and

lim N (0)w N(t) = x(t;r,4,f)
N -*oo

uniformly in t for t 6 [s,T] and uniformly in f for f in bounded

subsets of L2 (s,T).

We conclude this section with the description of a particular approxi-

mation scheme which is included in the framework constructed in section 3.

While the scheme we develop is closely related to the spline based schemes

discussed in [6] and [8], slight differences in formulation necessitate the

presentation of the scheme's development in detail.

Consider the partition of [-r,O] given by ftN}N=O with tN N -
0 N

j = O,I,2,--.,N, and define

1 {(rp, ) eZ:r = 0(0), a first order spline function with
N

knots at t., j = O,I,2,',N}.
J

1 1=n(l)
The set Z is a finite dimensional subspace of Z with dim Z n(N-I).

NN

A basis for ZI may be constructed as follows:

For {tN} N= as above, and each j = 0,1,2,''',N, let eN(')l[-r,0- R

denote the "hat" functions defined by

N (_tN tN < 0 < 0

N N 0

tr(e- t1 ) t 1 <~

0 0 otherwise

N-( -t N_l t N < 0 < t j_
N N N N

N N N-tj+I )  tJ+1 < 0 < tj , j = 1,2.-'-,N-I
0 -(- - - N

( 0 otherwise
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S NI N-r <0 r!0

NtN-) N (0eN(O) =

0 otherwise

and let

0 =  (eN(O)v NeJ = O,1,2,--,N , k = 1,2,''',n
(J+l)k = ~ v

with vk = (0,''',0,i,''',0)T ER n  where the 1 appears in the kth position
i'nNl 1 b

It can easily be verfied that { N ln (N+ l)  is a basis for ZN.  Let PN be
1 1~t 1 At

the orthogonal projection Z. - ZN and define A N t PNA(t).

THEOREM 4.1. The approximation scheme {Z ,PN, AN(t) satisfies all

of the conditions in the statment of Theorem 3.1.

Pkoo6. Since conditions (1) and (2) of Theorem 3.1 are trivially

1 1
satisfied by {ZN,PN,AN(t)}, we need only to argue that it satisfies condi-

1 1 1
tion (3) as well. That Z N, PN (1 satisfies condition (3a) is established

in the proof of Theorem 4.1 in [8]. Therefore we only discuss condition

(3b) here.

Let q = (0(0),p) C W with p E H2 (-r,O) and let N= N= ( N(O)'N)

Theorem 2.5 of [22) (see also Theorem 21 of [23)) implies

N tN
tk-l 2 k-

(.6)f JD(O - _K 2 f D 2

N Ntk k
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and

tN tNI k-I 2 tk-i
(4.7) f I -~ r4 ID22

N 4N

tk t k

I g2

where aN denotes the interpolatory spline for H 2 (-r,O) with knots
N

at {tj i__O. From (4.6) and (4.7) we find

N 7T D N 12(4.9) _D (_Ll)221<D 2,

Making use of the norm equivalence relation

N :SI HP < /_V Iz

together with the minimality properties of the orthogonal projection

P I :Z0 Z we find
NP N

(4.10) 1N-44 2 < IP tZ =I N-$Iz

< - -i$N -$I0 - _$0 N_-012,o

where

N ( )N = Z'N

We next use the Schmidt inequality [22] to estimate JD(N - Ia Since

a- N wN' N are linear on each sub-interval (t ,t j -1 we have
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N

(4.11) ID( -N-N) j f -D(4N,- )I -- I D )12

t

N

K (N)2f 1- 2
-J=l r t N  N N

tj

N N

N J-1 j-1 1
K (N2 f 12 ~+f 112 ~N

< E ( j I N- tj -l

j=1 N N
t N

7j=l

-r '

t.

K 2 _2 K 2I22

r )IN- 12 + -4 N~) 1 2
Tr

where we have used (4.7) and (4.10) in making the estimates above. Therefore,

by (4.9) and (4.11) we find

(4.12) cD( -- 412 .2ID( N- )12 + I D( - )12

-2 N 1) 12 "+ 2 N) D2q 2
( 'T

<__ ,(4 NID2',i 2
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where

(N ) = 0 N

Noting that K(N) < K, K independent of N and E H 2(-r,0), we have

JD( N-O)12 0 N -

and

JD( N - 0) 12 < KID2 012'

which establishes the second part of condition (3b). To see that for each t,

L(t)PN L(t)O, it can be argued (cf. [8], Theorem 4.1) that (4.12) im-

plies

ON(a) -0(0)1 < 0()

as N 0, uniformly in e for 6 E [-r,0O. Therefore, for each t > s,

IL(t)O - L(t)O I < 0(-) as N - - and condition (3b) has been established.N N

For I Nin(N+1), the ZN1 basis defined earlier, the matrices QN andr N

HN(t) take on a particularly simple form. Indeed, for the case v 1

(and therefore p(e) = 1) we have



r 3 06

1 21

0

1 r01
N N

0

121
6 6

0'01 .1
0 06 3

and

%~(t) H N (t) +

where

A ()D N D N (t) ... D N ) A1(t+D N(t)
0.0

0 0 *0 0

11H N(t

00
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with

o

DN(t) = -r A(t,6)eN(e)dO

and

1 1

2 -2 0

! o 1

0

120

0

1 1

o o -2

for N = 2,3,''' where O denotes the Kronecker product and I is the

n x n identity matrix.

As in the case of the approximation schemes developed for autonomous

equations in [8],modifications of the results presented above can be used

to verify that approximation schemes employing higher order spline functions

and satisfying the conditions in the statement of Theorem 3.1 can be construc-

ted.
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5. Approximation Schemes Incorporating Time Discretization

In this section we briefly outline and discuss two alternative approxi-

mation scheme formulations based upon the approximation framework and state

discretization techniques developed in section 3. However, the two schemes

which we are going to introduce differ from the strictly semi-discrete schemes

discussed previously in that these schemes incorporate various degrees of

time discretization together with the state discretization. In particular,

the first alternative allows for the discretization of the time dependence

of the operator L(t). This capability is extremely desirable when the time

dependent matrix coefficients on the right hand side of the FDE are computa-

tionally expensive to evaluate. On the other hand, the second scheme allows

for the complete discretization of all time dependence appearing in the equa-

tion. These schemes result in difference equation approximations and are in

the same spirit as the approximation techniques discussed in [18] and [20].

We discuss each alternative separately and in turn.

Let [ZN,PN,AN(t)} be an approximation scheme for the initial value

problem (2.1), (2.2) and for each t > s define the operators N(t):ZN - ZN

by

(5.1) A(t) = A,(k ) (k-l) - < t < k
NN' N - N

for k = i, i+l,'., where i is that integer for which (i-1)-r 'C s < I r

We consider the ordinary differential equation in ZN given by

(5.2) N(t = AN(t)zN(t).

Since AN(t) is piecewise constant, the evolution operator corresponding to

(5.2) is of the following form:
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If (i-1) K < s < t < i It

UN(t,s) = exp (t-s)AN(i ]•
if (J-1 S < r< ... <j-i 1 < t < j 1,

If (i-l) . < < r
N - N N - N

N~(t,s) =exP[t(-) ~)N i)]x[A(-l -)

.extf - (1)-] exp f wi - )i)lN.IN.N......

It then follows that

w(t-(j-1)-E) aKs)j1 w(K.UN(ts ) jP < e e e N e(ts)w

k=i+l

and therefore for t < T

l 1 N(t,s)l < me w T - )

where

M =

THEOREM 5.1. Consider the FDE initial value problem (2.1), (2.2) under

the additional assumption stated in Theorem 3.1. Suppose further that

{z NP NA N(t)} is an approximation scheme satisfying conditions (1), (2), (3)

of Theorem 3.1. Then if {ZN,PN,AN(t1 is an approximation scheme with A(t)

defined as in (5.1), we have

lim I[PNU(t,s) -UN(t,s)PN]ZoI 0
Nor

for each zO E Z  uniformly in t for t F-[s,T].

0i
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PAto6~. As in the proof of Theorem 3.1, it can be argued that for

z 0 6D

(5.3)

ID N(t~s)P Nz 0P N U(t's)zO 01= If 6(t'T)[A N(T)P-P A(Ti)lu( ,)zd

T

<MeW(T-s)f T A(~z-rsl-

The desired result will clearly follow if we can demonstrate that for each

T G[s,T] the integrand in the last expression in (5.3) above tends to zero

as N - -,~ with the convergence being dominated. Fortunately,

however, this can be argued in precisely the same manner in which it was

done in the proof of Theorem 3.1 with one minor exception. We must show

tha fo (jl~j< - < rz(Tr's) = (x(T),x) and P z(-r s) =- (x N(Tr),x ),
NN rNN 'T

LO )% T -* L(T)x T

with the convergence being dominated. Using the estimates computed in

proving the analogous claim in Theorem 3.1, we have

(5.4) IL (jr)xN-L(T)x_ < IL (jr) (xN _x )I + I(L (jr)-L(T))X I

Nv 2

V~Ijo + 21( 0r d12I)<~~~ ~ E A1 +r A(*,e) d)1

(IxN_ ~rI(xN _ xT)2

<Mx(IN.x+ +I IiID T' -x)I

+ E JA j(j r - A(T) I+ f fA(j ,e) - A([,O) Ides
(j=0 N-r T

-0 as N
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where we have used conditions (3a) and (3b) to conclude that the first

term above tends to zero and the continuity of the right hand side of

the FDE to conclude that the second term tends to zero as well. Recalling

that by condition (3b) we have

ID(x N_ X KID 2 x KID 2xi
IxT xT)12  '11~x2 j- V2

it then follows that the convergence in (5.4) is dominated.

Finally, as was the case in Theorem 3.1, D dense in Z and the opera-

tors [U N (ts)PN - PNU(t,s) ] uniformly bounded are sufficient to guarantee

convergence on all of Z and the theorem is proven.

We next turn our attention to the second alternative which involves the

total discretization of the time dependency in the equation. Let

{ZN,PN,AN(t)} be an approximation scheme for the initial value problem (2.1),

(2.2) satisfying the hypotheses and conditions of Theorem 3.1. Suppose

further that AN(t) and i are as they were defined in (5.1). Then for

each N = 1,2,'.., and each t > s define the operator VN(ts):ZN ZN

by:

VN(ts) = (I- (t-s)AN (t))-l

if
r

(-) < s < t < rN

and

r -l~ I r-s

... - A.(i~l) ) 1 -l Ni -s)AN(s))-1

if

r rrr

(-1) N N << -t < . <

o_ =._ N
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In light of the arguments regarding the maximal dissipativeness of the

operators AN(t) - wI given in the proof of Theorem 3.1, we have that for

N sufficiently large, the operator inverses required in the definition of

VN(t,s) above exist. Furthermore, using (3.1) it is easily verified that

N (-)N+2IVJN(t~s) < rWr -(j-i+l) r (t-s)+ 2 eW(t-s)IV~tS I - r- = (i-w ) < (1-- )

k=i ( N as N ,

and hence, for s < t < T, V N(t,s) is uniformly bounded. In fact, it can

be shown that for all N sufticiently large there exist an > 0 such

that

w (T-s)(5.5) IVN(t,s)j < Me

where

M = /V.

THEOREM 5.2. Let (Z P NA N(t)} be an approximation scheme for the

initial value problem (2.1), (2.2) under the additional smoothness assumption

stated in Theorem 3.1. Suppose further that {Z P NA N(t)} satisfies

conditions (1), (2), and (3) of that theorem. Then for V N(ts) as defined

above, we have

lim I[PNU(ts)-VN(t,s)PN]ZOI = 0
N-'-

for each z0 E Z uniformly in t for t 6 [s,T].

The proof of Theorem 5.2 can be argued in a manner similar to that

used by Yosida in the proof of Theorem XIV.2 in [25]. We shall outline the

essential ideas. Using the definition of VN(t,s) and the resolvent

identity (i.e. for A, B linear operators and X 4 p(A)n p(B) we have
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R(X;A) - R(X;B) = R(X;A)(A-B)R(X;B) it is not difficult to show that

f or N sufficiently large

(5.6) -VN (t,s) = -VN(t,s) A(s) (i- (i r_ s)AN(s))-l

This in turn implies that for z 0 F D

(5.7) -L)V(,[P -~
@T7 VN tTNPNU(t 0zo

V tT)P Ut~ + V (t,tr)P P U(,
12DT VNt PN] PNUt ' 'N N N 3T U~~ 0

- (t,~TIPNA (T) -AN(T) (I -(i '--T)A(T)) PI~,)o

Integrating both sides of (5.7) from s to t we find

[P NU(t,s) - V N(t,s)P NIz 0

t

=fV(t,T)IPNA(T- (I- a(i ~T)AN -t)) N()PNIU(t )zodT.

Using the bound given in (5.5) we have for zo D and z(t,s) -U(t,s)z 0

(P NU(t,s) - V N(t~s)PN ]ZOI

t

t

+ T)V~tr - (iTA(r) I jPNA()Z(T,S) ldT

T

< Me (Ts(l -.W f I I[A(T)P N-PNA (T)]IZ (T, S) I d

5
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T

+ Me (T-fP NfP ( i () I (-- )Zd(, S) d

SS

TT
ss
TT

+ Y2 fi (iN-LP- (iA-T)(T,))P-N!ATzT,)d

s+TT

-- 1 + T 2"

We have already argued (cf. proof of Theorem 5.1) that T, 0 as N-,

uniformly in t for t G[s,T]. Consider the term T 2  Since

r j, '1- -- P1, ( i~ - a t
(-T) A~N T)) PI 10 ((N T)AN(T))

where PI,0 (z) denotes the (1,0) entry in the Pad6 table of rational

function approximations to the exponential we can apply [20, Theroem 10.3]

and thus conclude that for each T E [s,T]

as N - 0. Furthermore, since z0 E D and z(r,s) = (x(T),x T ) we have

IN(E(i - T)XN(T) -1N- 1 PN IA(T)Z(T,s) 12

r'[Dx 2L2 ( rT)

<r -- T)4 (T)0  1 i1 IA(T)Z(T s)'
-~ N' 'N ' N- N J'

s(Mrs-w.K7 1+1)2 1 (L(-r) x.1Dx ),2 < (M(1l-1 +1 l)2 [ILT)x 12 + IDx 12]

0

< (M ( - W.K) 1 +1 [IA 1. + r I~(A(-,e))2eK)x4
-r

+ IDxI T)

L ( -,N< 0't
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for N sufficiently large. Therefore T2 + 0 as N - uniformly in t

for t P Es,T] and hence

f PNU(ts)- VN(ts)PN]ZO1 -* 0 as N -

uniformly in t for t F Is,T] for each zo D. Since D is a dense

subset of Z and the operators [PNU(ts) -VN(ts)PN] are uniformly bounded

we once again can extend the convergence to all of Z and the theorem is

proven.

If we define

zN(t,s;D,%,f) = U N (ts)PN(, ) + f UN(tT)PN(f(T),O)dT,
S

and

wN(t,s;n,,f) = VN(ts)PN(n, ) + fVN(tT)PN(f(T),O)dT,
s

then all of the statements in Theorem 3.2 regarding the convergence of the

approximations to the solution of the nonhomogeneous problem remain valid

with zN replaced by either zN or wN '

RemaAk. The operators UN(t,s) and UN(t,s) defined previously

must be computed indirectly. That is, they are computed as the numerical

solution to the ordinary differential equation initial value problems in

ZN  given by

UN(ts) = AN(t)UN(ts)

UN(SS) = I

and
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UN (ts) = AN(t)UN(ts),

U N(Ss) = I

respectively. The operator V N(t,s) on the other hand, can be computed

directly. Although in practice we never actually compute the operators

UN9 UN or VN, the above observation reveals that when one uses the fully

discrete scheme, there is no further approximation required beyond the

approximation of A(t) by AN(t) and z0  by PNZO. However, the time

discretization employed in the definition of V N(t,s) is essentially a

backwards Euler scheme which is only first order convergent (cf. [20]).

It is unlikely, therefore, that the discrete scheme we have presented would

perform as well as the semi-discrete schemes used in conjunction with say

a fourth order Runge Kutta method to integrate the approximating ordinary

differential equation. The discrete scheme should not however be totally

discarded in that it does represent a starting point for the development

of a discrete approximation framework (similar to the one developed for

autonomous delay systems in [20]) encompassing time discretizations of

arbitrarily high order.

6. Numerical Results

In this section we discuss a variety of numerical examples which demon-

strate the feasibility of the approximation methods developed in sections

3 and 4. All computations were performed using a software package written

for the IBM 370 model 158 computer at Brown University. Since our primary

objective was to test our approximation methods and their convergence pro-

perties, factors such as computational efficiency and storage requirements

were given only secondary consideration in the design of our programs. We
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note that software packages developed to implement the spline approximation

schemes for linear autonomous functional differential equations discussed in

[8] can easily be modified so as to be able to generate approximate solutions

to nonautonomous equations via the schemes which we have presented above.

In all of the examples which follow, the approximation scheme employed

represents a realization of the linear spline scheme discussed in section

4. In order to analyze the convergence properties of the scheme we have

computed either exact solutions via the method of steps or highly accurate

approximate solutions using the method of steps combined with a fourth order

Runge Kutta integration scheme for ordinary differential equations. In the

latter case, we emphasize that although our reference solutions are approxi-

mate, they were computed using methods which are completely independent of

the uproximation schemes which we are testing, and hence should not lead

to invalid conclusions. In fact, for the examples for which exact solutions

were available, we also computed approximate reference solutions and found

them to be virtually indistinguishable from numerical tabulations of the

exact solutions. The examples for which the exact solution was used as

the reference solution are those for which the appropriate formulas have

been provided.

The entries 6N in the tables which follow represent the absolute

differences between the reference solution x (exact or approximate) and

our approximate solutions evaluated at sample points {t k along the interval

of interest. That is

6N = Ixj(tk)- [6N(O)wN(tk)]jI,

for j - 1 or 2, dependinp on the usage below, where wN(t)= (w (t),-,wN (0))T

is the solution vector of the approximating ordinary differential equation
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computed using a fourth order Runge Kutta method and N denotes the

matrix function on (-r,0) defined in terms of the linear spline basis

given in section 4.

Example 6.1.

For our first example we consider the first order homogeneous equation

kt) = x(t) + tx(t-z),

on the interval [0,2] with constant initial data given by

x0 (0) 1 , -l < a < 0.

For this example we have computed the exact solution and it is given by

t2 e t - t - I t F- [0,11

x(t) =

2et + (t2 - 8)e t- 1 + t2 + 2t + 2 t E[1,2]

Upon inspection of the numer4 il results given in Table 6.1, it is easily

seen that convergence is second order.

Table 6.1

t x(t) 62 64 68 616 632

0 1.0 0 0 0 0 0

.25 1.31805 .0310 .0108 .0024 .0006 .0002

.5 1.7974 .0655 .0167 .0043 .0010 .0002

.75 2.4840 .1079 .0275 .0069 .0017 .0004

1.0 3.43656 .1482 .0391 .0097 .0024 .0005

1.25 4.7773 .1933 .0519 .0145 .0036 .0009

1.5 6.73324 .2859 .0823 .0205 .0051 .0013

1.75 9.6190 .4560 .1282 .0325 .0081 .0020

2.0 13.9050 .7405 .2007 .0516 .0130 .0033
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Example 6.2.

For our next example we consider the governing equation from an optimal

control problem discussed in [18]

x(t) = 6tx(t-l) + u *(t) t e [0,2]

xo(e) - -1 < e < 0

2_-3at 2
- 6ct+ lOc t E [0,1]

u(t) 
tE 1,1a t E [l,2],

,

where a- -23.5/44.8. The nonhomogeneous term u appearing in the

equation above is the point in L2 (0,2) where the functional

(D(u) = x 2 (2) + 1 u u2 (t)dt,

0

achieves its minimum subject to the equation above. The exact solution

is given by

f-tt3+3(1-a)t2 +10ot+ t E [0,1]

x(t) =

(-l.2c)t
5 + 4.5t 4+ (26a-12)t

3

t C [1,2].
+(12-36a)t 2 + ett+ (16.2et- .5)

The numerical results for this example can be found in Table 6.2. Once again,

the convergence is essentially second order.
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Table 6.2

t x(t) 64 68 6 132

0 1.0 0 0 0 0

.25 -.01733 .0238 .0034 .0010 .0002

.5 -.41378 .0002 .0008 .0002 .0000

.75 -.14017 .0089 .0013 .0009 .0002

1.0 .85267 .1353 .0405 .0122 .0039

1.25 1.43499 .1222 .0095 .0048 .0004

1.5 .7359 .1716 .0082 .0042 .0013

1.75 -.2029 .3263 .0670 .0125 .0033

2.0 .52455 .2170 .0657 .0186 .0055

Example 6.3.

Here we consider the scalar second order homogeneous equation

K(t) + tx(t-l) + x(t) = 0.

On the interval [0,3] with initial conditions given by

x0(0) = cos(8+1)

0 -1 < a < 0

0 (0) = -sin(0+1)

Rewriting the initial value problem above as . first order system we have

Y(t) = Y(t) + yAt-1),
-i0 00

cos(e+1)
Y 0(0) - -sin(O+l l < 0 < 0,

where
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y(t) =

Our numerical results for Y, = x and Y2 = x are tabulated in Tables

6.3 and 6.4 respectively. For this two dimensional example, the convergence

is observed to be quadratic for both components of the solution.

Table 6.3

t Y1 (t) 62 64 68 616

0 .54030 .00168 .0003 .0000 .0000

.5 .075816 .0046 .0009 .0002 .0001

1.0 -.34086 .0277 .0076 .0019 .0005

1.5 -.46758 .0637 .0163 .0041 .0009

2.0 -.14448 .0885 .0211 .0051 .0012

2.5 .487092 .0546 .0092 .0018 .0003

3.0 .86544 .0868 .0291 .0079 .0022

Table 6.4

t y2 (t) 62 64 68 616

0 -.84147 .0021 .0003 .0000 .0000

.5 -.95738 .0126 .0035 .0009 .0002

1.0 -.62366 .0247 .0060 .0015 .0003

1.5 .17833 .0221 .0050 .0011 .0002

2.0 1.07236 .0198 .0081 .0024 .0008

2.5 1.2591 .1283 .0369 .0096 .0025

3.0 .01298 .2552 .0447 .0085 .0218
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Example 6.4.

We again consider a damped oscillator with delayed damping. In this

example, however, we place the time varying coefficient in front of the

restoring term instead of the damping term as was the case in the previous

example. The initial value problem is given by

x(t) + x(t-l) + tx(t) = 0 t F-[0,3]

x0 (0) = cos(0+1)
-l < 0O<O,

X0 (0) = -sin(l+l)

or

=L Jy(t) + L 11y(t-l) t G[0,3]

cos (0+1)]
Yo(O) = L-sin(0+ 1J) -1 _ e o 

where

y(t) =

if written as an equivalent first order system. Examination of the numerical

results contained in Tables 6.5 and 6.6 reveals that the quadratic convergence

is unaffected by the placement of the time varying coefficient. Once again

we have second order convergence in both the x and x components.
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Table 6.5

t yl(t) 62 64 68 616

0 .540302 .0017 .0002 .0000 .0000

.5 .133213 .0121 .0032 .0008 .0002

1.0 -.166604 .0370 .0096 .0024 .0006

1.5 -.230397 .0605 .0152 .0037 .0009

2.0 -.035350 .0480 .0098 .0023 .0005

2.5 .262053 .0240 .0085 .0023 .0006

3.0 .365969 .1226 .0307 .0076 .0019

Table 6.6

t y2 (t) 62 64 68 616

0 -.841470 .0021 .0003 .0000 .0000

.5 -.752190 .0184 .0044 .0012 .0003

1.0 -.396825 .0213 .0062 .0016 .0004

1.5 .149976 .0069 .0050 .0012 .0004

2.0 .577757 .0884 .0225 .0056 .0015

2.5 .504380 .1601 .0384 .0094 .0024

3.0 -.163431 .0899 .0148 .0029 .0006

Example 6.5.

In this example we consider a damped oscillator with sinusoidal

external force and delayed restoring force having a time varying coefficient.

The initial value problem is given by

R(t) + x(t) + tx(t-1) = sin t
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x 0 (0) = sin(o+l)

X0(O) = cos(O+l)

or

yt [0 ]y(t) + L y(t-l) + [si]
-sin(o+l)-

Y = os(8+1) -1 < <

where

y(t) L(tJ

As the numerical results in Tables 6.7 and 6.8, substantiate, second order

convergence in both the x and x components of the solution is maintained

even with the inclusion of the nontrivial forcing term. However, as will

become apparent from the numerical results discussed in Example 6.9, the

rate of convergence is sensitive to the smoothness of the function appearing

as the nonhomogeneous term in the equation.

Table 6.7

t Yl(t) 62 64 68 616

0 .841470 .0021 .0003 .0000 .0000

.5 1.067646 .0006 .0007 .0001 .0000

1.0 1.243813 .0125 .0027 .0007 .0002

1.5 1.341552 .0152 .0040 .0010 .0003

2.0 1.269265 .0057 .0006 .0001 .0000

2.5 .902306 .0147 .0049 .0012 .0003

3.0 .132715 .0425 .0115 .0029 .0007

Nola
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Table 6.8

t Y2(t) 62 54 68 616

0 .540302 .0017 .0002 .0000 .0000

.5 .395912 .0174 .0034 .0008 .0002

1.0 .296513 .0098 .0029 .0008 .0002

1.5 .063469 .0033 .0007 .0004 .0001

2.0 -.395815 .0115 .0047 .0009 .0002

2.5 -1.111002 .0238 .0054 .0014 .0003

3.0 -1.97221 .0355 .0091 .0021 .0005

Example 6.6.

For the second order equation

K(t) + e-tx(t-l) + x(t) = sin t t E [0,31

with initial data

XO( 0 Cos( l

0'x0 (e) = -sin(3+1) -

the numerical results given in Tables 6.9 and 6.10 exhibit second order

convergence.
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Table 6.9

t x(t) 62 64 68 616

0 .540302 .0017 .0002 .0000 .0000

.5 .106974 .0093 .0026 .0007 .0002

1.0 -.171978 .0413 .0108 .0027 .0007

1.5 -.134712 .0671 .0167 .0041 .0010

2.0 .217952 .0554 .0123 .0029 .0007

2.5 .745662 .0035 .0033 .0010 .0003

3.0 1.227099 .0904 .0239 .0061 .0016

Table 6.10

t c(t) 62 64 68 616

0 -.841470 .0021 .0003 .0000 .0000

.5 -.791286 .0217 .0061 .0015 .0004

1.0 -.269420 .0232 .0050 .0012 .0003

1.5 .416949 .0127 .0039 .0011 .0003

2.0 .944983 .0766 .0206 .0052 .0013

2.5 1.08968 .1262 .0308 .0077 .0019

3.0 .756316 .1253 .0284 .0069 .0017

Example 6.7.

In this example we consider the same damped oscillator as the one dis-

cussed in Example 6.5. Here, however, we exclude the external forcing func-

tion and provide discontinuous initial data. The initial value problem is

given by

x(t) + x(t) + tx(t-1) = 0 t E [0,31,
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1 E [-1,-i]
xo(6) - 90 -i 0 (- Lo ]

xo(O) = 0.

The numerical results for this example can be found in Tables 6.11 and

6.12. From the data contained in these tables, it can easily be inferred

that the rate of convergence is sensitive to the smoothness of the function

given as initial data. Indeed the convergence exhibited in both the x and

x components of the solution is clearly not second order. It is interesting

to note initial data that is continuous but not C can also lead to sub-

quadratic convergence. We shall see this in the next example.

Table 6.11

t x(t) 62 64 68 616

0 -1.000 .0430 .0070 .0003 .0000

.5 -1.018469 .0094 .0324 .0260 .0069

1.0 -.994824 .0482 .0549 .0211 .0013

1.5 -.779472 .0701 .0112 .0137 .0010

2.0 -.344241 .1063 .0615 .0164 .0004

2.5 .304900 .1421 .0257 .0064 .0041

3.0 1.063963 .1508 .0018 .0028 .0059
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Tablh 6.12

t (t) 6 2 64 68 616

0 0.0 0 0 0 0

.5 -.106530 .0766 .0442 .0252 .0143

1.0 .228874 .0286 .0349 .0114 .0120

1.5 .641839 .0407 .0411 .0263 .0033

2.0 1.099665 .0880 .0161 .0167 .0051

2.5 1.463359 .0484 .0838 .0074 .0034

3.0 1.494070 .0533 .0387 .001.8 .0066

Example 6.8.

Here we consider the second order equation

i (t) + tk(t-1) + x(t) = 0 t 6E [0,31,

with continuous but not C initial data

1+6 0 G [-11-0]

0 ~ 6 E. (-J, 01

Written as a first order system, the initial value problem becomes

(t Y1(t) + y~t j)
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{[+]

e (-0,o]

with

y(t) = ()

It is evident from Tables 6.13 and 6.14 that second order convergence has not

been achieved. In fact there does not appear to be a discernible pattern

to the convergence. It can be pointed out that the initial data for this

1 1example is contained in ZN , N > 2, where Z denotes the linear spline

approximation spaces being used (see section 4). It is evident from this

example that this feature need not have a positive effect upon the performance

of the approximation schemes. This is in contrast to the behavior observed

for the averaging schemes discussed in [8] when applied to autonomous equations.

Table 6.13

t Yl(t) 62 64 68 616

0 0.0 0.0 0.0 0.0 0.0

.5 -.5 .0937 .0361 .0122 .0045

1.0 -.843932 .2110 .0138 .0149 .0113

1.5 -.736574 .3184 .0264 .0263 .0202

2.0 -.123418 .2915 .0013 .0201 .0188

2.5 .629872 .0372 .0027 .0108 .0074

3.0 .756091 .3846 .0384 .0001 .0105

A- -A
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Table 6.14

t Y2(t) 5 2 6 8 616

0 -i.0 .0819 .0122 .0005 .0000

.5 -1.0 .0735 .0717 .0307 .0214

1.0 -.289816 .1923 .0159 .0032 .0159

1.5 .752107 .0427 .0296 .0007 .0091

2.0 1.57099 .2871 .0718 .0383 .0180

2.5 1.172884 .6506 .0309 .0580 .040

3.0 -.920864 .6728 .0716 .0309 .0239

Example 6.9.

For our final example we again consider the damped oscillator with

delayed restoring force of Example 6.5. Here, however, we include a dis-

continuous external forcing function in the equation. The initial value

problem is given by

K(t) + x(t) + tx(t-l) = IuO 5 (t) t e 10,31,

x 0(0) = cos(e+l)

xo0 (O= -sin(0+1)

where U 5  denotes the unic step at t = .5 defined by

ul 5 (t) = O t< .5
1 .5<t.

Rewritten as a first order system, the above problem becomes
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y(t) = y(t) + 0 ] y(t-l) + u. 5 (t)

Fcos (e+)]

YO(0) -sn+ -1 6 < 0,

where

y(t) 
t

L(t)i

Not unexpectedly, we found that the observed rate of convergence for our

approximation schemes was sensitive to the discontinuity in the forcing

function. As the numerical results in Tables 6.15 and 6.16 bear out,

convergence in the first component of the solution appears to be second

order throughout, while in the case of the x component, quadratic con-

vergence is obtained at some of the sample points but not at others. The

discontinuity in the nonhomogeneous term introduces a jump in the second

derivative of the solution. This, in turn, will degrade the performance

of the approximation schemes.

Table 6.15

t yl(t) 6 2 64 68 16

0 .540302 .0017 .0002 .0000 .0000

.5 .191454 .0182 .0044 .0010 .0003

1.0 .982577 .1672 .0454 .0108 .0027

1.5 3.330325 .2486 .0585 .0148 .0037

2.0 6.631893 .2137 .0551 .0133 .0031

2.5 10.105261 .0876 .0077 .0017 .0001

3.0 12.380963 .2126 .0654 .0177 .0050
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Table 6.16

t Y2 (t) 62 64 68 616

0 -.841470 .0021 .0003 .0000 .0000

.5 -.557825 .0214 .0043 .0023 .0010

1.0 3.386594 .1169 .0115 .0047 .0012

1.5 5.823277 .0522 .0022 .0010 .0004

2.0 7.133736 .0543 .0261 .0104 .0036

2.5 6.298532 .2048 .0628 .0143 .0041

3.0 2.180855 .4984 .1208 .0318 .0086

Although a complete characterization of the convergence properties of the

approximation schemes we have developed would be extremely difficult if not

impossible to obtain, based on the numerical evidence which we have presented,

the following conclusion can safely be drawn. Our schemes appear to yield

quadratic convergence for initial value problems in which the initial data,

external forcing function, coefficients and therefore the solution are

smooth. On the other hand, it is a relatively simple matter to break

the second order convergence in some or all of the components of the

solution through the introduction of irregularity into the solution.
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